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By Liouville’s theorem in complex analysis, the complex plane C
contains no nonconstant bounded holomorphic functions. But the
unit disk D in C has plenty of bounded holomorphic functions.

From geometric viewpoint, C has no metrics of negative curvature.
The unit disk D has Poincaré metric

ωP =
dz ⊗ dz̄

(1− |z |2)2

which has curvature −1.



To generalize to a complex manifold M, the holomorphic function
is naturally replaced by the holomorphic section of canonical
bundle KM . Such a holomorphic section is locally given by

f (z)dz1 ∧ · · · ∧ dzn,

where n = dimCM. A natural question is, when does KM have
plenty of holomorphic sections?



A classical result of Kodaira tells us that, if M is compact Kähler
with KM > 0, then KM is ample; in particular, for all sufficiently
large m, the bundle mKM have lots of holomorphic sections. Now
the question is, when does a complex manifold M have KM > 0?

A well-known theorem of S. S. Chern says that if M admits a
metric with negative Ricci curvature, then KM > 0.

Since the proof of Calabi conjecture in the case of negative scalar
curvature due to Aubin and myself independently, we know that a
KM > 0 if and only if M admits a Kähler-Einstein metric with
negative scalar curvature.



In the late 1970s I conjecture that if a compact complex manifold
M has negative holomorphic sectional curvature H, then KM > 0.
On the other hand, the conjectures of Kobayashi and Lang assert
that if M is Kobayashi hyperbolic then KM > 0.

M hyperbolic KM > 0

H < 0

Kobayashi−Lang

Schwarz

Yau

These conjectures are related via the Schwarz Lemma. Negative
holomorphic curvature on a compact manifold M implies M is
Kobayashi hyperbolic. Its converse does not hold in general, in
view of the example of Demailly (1995).



Both Kobayashi-Lang conjecture and my conjecture would hold for
submanifolds provide they hold for the ambient manifolds, because
of the decreasing property of holomorphic sectional curvature and
the Kobayashi hyperbolicity.

Several authors have made contributions to these conjectures. In
complex dimension two, these are answered affirmatively
independently by Bun Wong and Campana, by means of the
classification theory of compact complex surfaces. A short direct
proof is later provided by the join paper of Godon Heier, Steven
Lu, and Bun Wong (2010) using only standard algebraic geometry
(Nakai-Moishezon-Kleiman criterion, Riemann-Roch, and Hodge
Index Theorem) and a generalized Gauss-Bonnet theorem due to
Bishop-Goldberg.



In higher dimensions, it is natural to first consider the projective
algebraic manifolds, where some algebraic-geometric tools and
partial classifications are available. Peternell (1991) proves the
Kobayash-Lang conjecture for projective three-fold except for the
Calabi-Yau threefold which contain no rational curves.

As a testing case, Pit-Mann Wong, Damin Wu and myself several
years ago prove my conjecture for all projective manifolds with
Picard number equal to one. The holomorphic sectional curvature
in Wong-Wu-Yau is only assumed to be quasi-negative (i.e.,
nonpositive everywhere and negative at one point).



The projective threefold case of my conjecture has been completely
settled by a series of paper of Gordon Heier, Steven Lu, and Bun
Wong (2010, 2014), which make an interesting connection to the
abundance conjecture in the algebraic geometry. They indeed
prove my conjecture by assuming the validity of the abundance
conjecture, which is known to hold for dimension less than four.

More precisely, Heier-Lu-Wong prove that if a projective manifold
with negative holomorphic sectional curvature then the canonical
bundle is nef, and the nef dimension is equal the dimension of the
manifold. (The nef dimension of a nef class on X is equal to
dimY , where there exists a dominant rational map X 99K Y
satisfying certain numerical properties and Y is unique up to a
birational map.) A version of the abundance conjecture asserts
that for a projective manifold with nef canonical bundle, the
Kodaira dimension is equal to the nef dimension, that is, the
manifold is of general type.



Recently, Damin Wu and myself are able to remove the need for
the abundance conjecture. Wu-Yau (2015) provides two slightly
different proofs for my conjecture for the projective manifolds in all
dimensions. That is, if a projective manifold M admits a Kähler
metric with negative holomorphic sectional curvature, then KM is
ample.

In view of the decreasing property of holomorphic sectional
curvature, we know any smooth subvariety in M also has positive
canonical bundle. In particular, In particular, every nonsingular
subvariety of a smooth compact quotient of the unit ball in Cn has
ample canonical bundle.



The first proof in Wu-Yau (2015) reduces to show the integral
inequality ˆ

M
c1(KM)n > 0.

In fact, the hyperbolicity implies M contains no rational curve; by
Mori’s theory, KM is nef. The nefness together with the integral
inequality implies KM is big, which is due to the result of Demailly,
Siu, Trapani, and other people, as an application of Demailly’s
holomorphic Morse inequality.



A important step in Wu-Yau (2015) is to introduce a
Monge-Ampere type equation to construct a family of Kähler
metrics whose Ricci curvature has a lower bound. This allows one
to apply the refined Schwarz Lemma to show the desired integral
inequality.

The refined Schwarz Lemma is initiated by Ahlfors (1938),
developed by Chern (1960s), myself in 1978, Royden (1980), and
many other people. The version used in Wu-Yau (2015) is a
strengthen result of our previous work joint with Fangyang Zheng,
and with Pit-Mann Wong.

The second proof in Wu-Yau (2015) is to directly show that the
family of metrics converges to a Kähler-Einstein metric, which
implies KM > 0.



By using both the Monge-Ampère equation and the refined
Schwarz Lemma in Wu-Yau (2015), Tosatti-Yang (2015) show that
if a Kähler manifold has nonpositive holomorphic sectional
curvature, the canonical bundle is nef. This combining the second
proof in Wu-Yau (2015) enables them to extend our result to the
Kähler manifolds.

Wu and I have realized that there is a direct proof of my conjecture
in the Kähler case, which uses purely geometric analysis, bypassing
the notion of nefness. The proof will be given shortly.



It is natural to extend these results to the case the holomorphic
sectional curvature H is quasi-negative, as in Wong-Wu-Yau
(2010). This extension is established by Deverio-Trapani (2016)
and Wu-Yau (2016), using the Monge-Ampère type equation and
the refined Schwarz lemma. In this situation, the key is the
compactness argument. Deverio-Trapani uses the pluripotential
theory, while Wu-Yau uses an elementary lemma inspired by the
work of S. Y. Cheng and myself in the mid 1970s.



The Monge-Ampère type equation and the refined Schwarz lemma
can in fact be used to study the ampleness under the Carathéodory
hyperbolicity. We can prove the following result: If a compact
Kähler manifold M is Carathéodory hyperbolic, then KM > 0. Here
a complex manifold M is called Carathéodory hyperbolic if there
exists a holomorphic covering M̃ of M such that the Carathéodory
pseudo-metric on M̃ is a metric.

The Carathéodory pseudo-metric on M̃ can be defined as below.
Given any complex holomorphic vector X at a point, look at all
holomorphic maps F mapping M̃ to the unit disk so that F maps
X to a vector at the origin. We maximize the Poincaré length of
F (X ), which is the Carathéodory pseudo-metric of X .

The point is now the metric that we had can be lifted to its
universal cover. Then apply Schwarz lemma to show that it is
dominated from below by the Carathéodory metric. We shall
discuss a more general result in the complete Kähler setting.



We now summarize the recent results and give proofs of them.

Theorem (Wu-Yau (2015), Tosatti-Yang (2015),
Deverio-Trapani (2016), Wu–Yau (2016))

Let (M, ω) be a compact Kähler manifold, and H(ω) be the
holomorphic sectional curvature of ω.

(i) If H(ω) < 0 everywhere on M, then KM > 0.

(ii) If H(ω) ≤ 0 everywhere on M, then KM is nef.

(iii) If H(ω) is quasi-negative, i.e., H(ω) ≤ 0 everywhere and
H(ω) < 0 at one point of M, then KM > 0.



Analytic proof for (i) H < 0 =⇒ KM > 0.

Let (M, ω) be a Kähler manifold. Inspired by the nefness of KM ,
we consider

(tω + ddc logωn + ddcu)n = euωn, t ≥ 0,

ωt ≡ tω + ddc logωn + ddcu > 0.

Here ω is the background Kähler metric with negative holomorphic
sectional curvature, and ddc logωn is the Chern form representing
the first Chern class of KM .

We would like to solve u for t = 0, by the continuity method.
First, we claim that for a sufficiently large t1, the equation has a
smooth solution.



To see this, we can pick a large t1 such that t1ω + ddc logωn is
positive definite on the compact manifold. Then tω + ddc logωn

defines a Kähler metric since it is d-closed. Note that the equation
can be rewritten as

(t1ω + ddc logωn + ddcu)n = eu+f (t1ω + ddc logωn)n,

where f is a smooth function given by

f = log
ωn

(t1ω + ddc logωn)n
.

This equation has a smooth solution u, by my early work on the
Calabi conjecture. This proves the claim.



Let
I = {t ∈ [0, t1];ωn

t = euωn, ωt > 0}.

Then I is not empty, since t1 ∈ I . To see I is open in [0, t1], let
t0 ∈ I with solution ut0 . Define

M(t, v) = log
(tω + ddc logωn + ddcv)n

ωn
− v

for all (t, v) in a near (t0, ut0). Then M(t0, ut0) = 0 and the
linearization of M at (t0, ut0) is

∆ωt0
− 1,

which is invertible between the Hölder spaces. Thus, applying the
implicit function theorem yields the openness of I in [0, t1].



The closedness of I requires the Schwarz Lemma. We use the
following version of Schwarz Lemma, based on Wu-Yau-Zheng
(2009) and Wong-Wu-Yau (2010).

lemma (Yau (1978), Royden (1980), Wu-Yau (2015))

Let Mn be a complex manifold with two Kähler metrics ω1 and ω2.
If H(ω1) ≤ −κ and Ric(ω2) ≥ λω2 + µω1, then

∆ω2 log(trω2ω1) ≥
((n + 1)κ

2n
+
µ

n

)
trω2ω1 + λ.

Here λ, κ, µ are continuous functions on M and κ ≥ 0, µ ≥ 0 on
M.



Closedness

The key feature of the Monge-Ampère equation is that ωn
t = euωn

implies
Ric(ωt) = −ωt + tω, sup u ≤ C .

Since H(ω) < 0 and M is compact, H(ω) ≤ −κ for some constant
κ > 0.
Applying the Schwarz lemma ω1 = ω and ω2 = ωt yields

∆ω2 log(trωtω) ≥
((n + 1)κ

2n
+

t

n

)
trωtω − 1.

By the maximum principle,

trωtω ≤
2n

(n + 1)κ
.



The estimates on trωtω and sup u are sufficient for the closedness
of I , by the argument in my early work. One way to see this is as
below. We can normalize at one point such that the components of
ω satisfies gi j̄ = δij and the components of ωt satisfies g ′

i j̄
= λiδij .

The bound on sup u yields

λ1 · · ·λn ≤ C

while the bound on trωtω is

trωtω =
1

λ1
+ · · ·+ 1

λn
≤ C .



By the elementary inequality

n∑
i=1

λi ≤ (trωtω)n−1
n∏

i=1

λi ≤ C .

Hence,
C−1 ≤ λi ≤ C , i = 1, . . . , n.

This also gives a lower bound on u, as

eu = λ1 · · ·λn ≥ C−n.

Thus, we obtain
C−1ω ≤ ωt ≤ Cω,

as well as the estimates of u up to the second order.



The third order estimate of u can be derived in a similar way as in
my early work: Let Y ≡ g ′

i j̄ ;k
g ′
r̄ a;b̄

g ′i r̄g ′aj̄g ′kb̄ to get

∆ωt (Y + C∆ωu) ≥ C1(Y + C∆ωu)− C2.

Hence, by the maximum principle,

Y ≤ C .

Now letting t → 0 we get a smooth solution u∗ satisfying

(ddc logωn + ddcu∗)
n = eu∗ωn,

ddc logωn + ddcu∗ > 0,

which gives the desired Kähler-Einstein metric with negative scalar
curvature. This in particular implies the canonical bundle is
positive.



Analytic proof of (ii) H ≤ 0⇒ KM nef.
It is sufficient to solve the Monge-Ampère type equation

ωn
t = (tω + ddc logωn + ddcu)n = euωn, ωt > 0,

for every small t > 0. Again use the continuity method: The
nonemptyness, openness, and C 0 estimate are the same as (i).
Only difference is that the upper bound κ of H(ω) can be zero.
Now the Schwarz Lemma reads

∆ωt log(trωtω) ≥ t

n
trωtω − 1.

It follows that

trωtω ≤
n

t
≤ n

t2
for all t2 ≤ t ≤ t1.

Here t2 > 0 is arbitrary. The C 2 estimate becomes

t2C
−1ω ≤ ωt ≤ Ct1−n

2 ω.



The higher order estimates of u depends on t2. Since t2 > 0 is
arbitrary, we obtain a smooth solution u of ωn

t = euωn. In
particular, euωn gives rise to a smooth metric on KM so that its
curvature form

ddc log(euωn) = ωt − tω > −tω.

This implies KM is nef.



Sketch proof of (iii) H quasi-negative⇒ KM > 0.

Since H(ω) ≤ 0 implies that KM is nef and M contains no rational
curve, it is sufficient to show KM is big, i.e.,

ˆ
X
c1(KM)n > 0.

Note thatˆ
X
ωn
t =

ˆ
X
c1(KM)n + tn

ˆ
X
c1(KM)n−1 ∧ ω + O(t2), t → 0.

It suffices to find a sequence tj such that

lim
j→+∞

ˆ
X
ωn
tj
> 0.

Need to bound max utj away from −∞.



A compactness Lemma

The following lemma is inspired by my work with S. Y. Cheng in
1975.

lemma
Let (M, ω) be an n-dimensional compact Kähler manifold, and let
v be a C 2 function satisfying v ≤ −1 on M and

∆ωv ≥ −C0

for some constant C0 > 0 on M. Then,
ˆ
M
| log(−v)|2ωn +

ˆ
M
|∇ log(−v)|2ωn

≤ C
[
1 + min

M
(−v)

]
where C > 0 is a constant depending only on n, ω, and C0.



Note
trωωt > 0 =⇒ ∆ωu ≥ −nt + s ≥ −C0.

Apply the compactness lemma to vt = ut −max ut − 1 to obtain a
sequence log(−vj) converges in Lq(M) to w . Thus,

vj −→ −ew almost everywhere on M.

Applying Schwarz lemma and elementary inequality to obtain

∆ωt log trωtω ≥
(n + 1)κ

2
e−max u/n − 1.

Integrating against ωn
t yields

exp(−max uj/n) ≤
2
´
M evjωn

(n + 1)
´
M κevjωn

≤ C ,

since κ > 0 in an open subset of M.



By passing to a subsequence ul → −ew + c almost everywhere in
M. Hence,

lim
l→+∞

ˆ
M
ωn
tl

= lim
l→+∞

ˆ
M
eulωn > 0.

This completes the proof of the result that H(ω) being
quasi-negative implies KM is ample.



The compactness lemma can be proved as below. We compute

∆ω log(−v) =
−∆v

−v
− |∇ log(−v)|2.

Since ∆ωv ≥ −C0 and minM(−v) ≥ 1, integrating over M yields

ˆ
M
|∇ log(−v)|2 ≤ C0

ˆ
M
ωn.

On the other hand, applying the weak Harnack inequality to
∆ω(−v) ≤ C0 yields that, for any 1 ≤ q < n/(n − 1),(ˆ

M
(−v)qωn

)1/q
≤ C

[
1 + min

M
(−v)

]
.

In particular, put q = 1 and note (−v) = e log(−v) ≥ [log(−v)]2/2.
This implies the L2 norm of log(−v). Combining these two
inequalities yields the desired estimate.



Complete Kähler-Einstein metric

We seek generalize the positivity to complete noncompact Kähler
manifolds. Note that on a compact Kähler manifold M, that KM is
positive is equivalent to the existence of Kähler-Einstein metric on
M with negative scalar curvature. Thus, our question is, under
what condition on the holomorphic sectional curvature would the
complete Kähler manifold admits a complete Kähler-Einstein
metric with negative scalar curvature.



The first result we proved in this direction is the following.

Theorem 1 (Wu-Yau (2017))

Let (M, ω) be a complete Kähler manifold whose holomorphic
sectional curvature H(ω) satisfies −κ2 ≤ H(ω) ≤ −κ1 for two
constants κ1, κ2 > 0. Then, M admits a unique complete
Kähler-Einstein metric ωKE with Ricci curvature equal to −1.
Furthermore, ωKE is uniformly equivalent to ω, and the curvature
tensor of ωKE and all its covariant derivatives are bounded.



We consider again the Monge-Ampère equation{
(tω + ddc logωn + ddcu)n = euωn,

ωt ≡ tω + ddc logωn + ddcu > 0
(MA)t

with the continuity method, as in the compact case. The key
difference is below: Notice that the openness, nonemptyness, and
bootstrap argument use the Schauder type estimate. The standard
Schauder estimate requires the injectivity radius of the complete
manifold to be positive, for which (M, ω) need not have. An
example is the Poincaré punctured disk.



To overcome this difficulty, we need to develop the notion of
(quasi-) bounded geometry initiated by S. Y. Cheng and myself
more than thirty five years ago. The idea goes as follows: If the
curvature tensor of the Riemannian manifold (M, ω) is bounded,
then there is a constant R > 0, depending only on the curvature
bounds, such that for any point x ∈ M, the exponential map expx

is immersion on the ball B(R) of radius R in the tangent space.
Then, the pullback metric on B(R) under expx has a nice property
that its Laplacian is uniformly elliptic on the ball B(R). If, in
addition, the curvature tensor of ω and all its derivatives are
bounded on M, we can apply the Schauder estimates to the
Laplacian of exp∗x ω on B(R).



Thus, instead of usual coordinate charts, we shall work on the
quasi-coordinate charts {(B(R), expx)}, which is sufficient for
solving partial differential equations on manifolds. However, for our
further applications to complex geometry, it is desired to have
holomorphic coordinate charts {(B(R1), ψx)} for which the radius
R1 is uniformly bounded away from zero.

To produce holomorphic coordinates, one needs to solve a
∂̄-equation. The starting point is the following inequality,
established by Siu and myself forty years ago,

|∂̄(x j +
√
−1 xn+j)| ≤ Cr2 on B(R),

where x = (x1, . . . , x2n) is a geodesic normal coordinate system
and r = |x | is the Euclidean distance.



By the L2-estimate of ∂̄, we obtain a system of holomorphic
functions which form an independent set in a small neighborhood
of the origin. Nevertheless, in applications we need to have an
effective version, that is, a system of holomorphic coordinates is
defined in a small ball B(R1), where the radius R1 depends only on
the curvature bounds. This requires some effective estimates,
which have been established in my recent work joint with Damin
Wu.



Once the quasi-coordinate charts {(B(R1), ψx)} are obtained, one
can define the Hölder spaces on M, as in Cheng-Yau (1980), by
pulling back the functions via ψx to B(r) and taking supremum of
all Hölder norms over B(r). We can now adapt the Schauder
theory to these Hölder spaces. This together with my generalized
maximum principle enable us to prove the nonemptyness,
openness, and the bootstrap argument.

Notice that in the process of constructing the quasi-coordinate
chats, we assume that the background metric ω has bounds for all
the covariant derivatives of its curvature tensor. To remove the
derivative bound, we invoke another key ingredient, which is a
result of Wan-Xiong Shi, obtained twenty years ago.



W. X. Shi (1997) proves that if a complete Kähler manifold (M, ω)
has bounded sectional curvature, then M admits another complete
Kähler metric ω1 which is uniformly equivalent to ω, and the
curvature tensor of ω1 has bounded covariant derivatives of
arbitrary order. Shi’s argument is to use the Ricci flow and derive
its short time existence. His argument can be extended to show
that if the original metric ω has negatively pinched holomorphic
sectional curvature, so is the new metric ω1.



By replacing ω with ω1, we can assume the curvature tensor of ω
has bounded covariant derivatives of arbitrary order, in addition to
H(ω) negatively pinched. Then, ω has quasi-bounded geometry.
This settles the nonemptyness and openness of ωn

t = euωn. By the
refined Schwarz lemma we have trωtω ≤ C . This together with the
upper bound of u implies the closedness, where the bootstrap
argument also uses the quasi-bounded geometry. This solves the
Monge-Ampère type equation. Thus, we obtain a Kähler-Einstein
metric ωKE which is uniformly equivalent to ω. In particular, ωKE

is complete. The uniform estimates on u implies the curvature
tensor of ωKE has bounded covariant derivatives of any order. The
uniqueness of ωKE is already known, due to my Schwarz lemma.
This completes the proof of Theorem 1.



This result can be generalized in several directions. Let me
mentioned two of them.

Theorem 2 (Wu-Yau (2017))

Let (M, ω) be a complete Kähler manifold with bounded sectional
curvature. Suppose that M has a holomorphic covering space M̃
such that for each point x ∈ M̃, there exists a holomorphic map F
from M̃ to a Kähler manifold (N, ωN) such that H(ωN) ≤ −1 and

F ∗ωN ≥ C ω̃ at x

where ω̃ is the induced covering metric, and C > 0 is a constant
independent of x. Then, M admits a complete Kähler-Einstein
metric ωKE which is uniformly equivalent to ω and the curvature
tensor of ωKE and all its covariant derivatives are bounded on M.



Theorem 2 contains the previous theorem (Theorem 1), in that if
the complete metric ω on M has negatively pinched holomorphic
sectional curvature, then in particular its sectional curvature is
bounded. Furthermore, we can simple take N = M and let F be
the projection from its universal cover M̃ to M. The argument of
Theorem 1 together with some covering space property implies
Theorem 2.

Theorem 2 in particular implies the aforementioned result: If a
compact Kähler manifold is Carathéodory hyperbolic, then its
canonical bundle is ample.



Theorem 3 (Wu-Yau (2017))

Let (M, ω) be a complete Kähler manifold with bounded sectional
curvature. Assume that M has a holomorphic covering space
π : M̃ → M satisfying the following conditions:

(i) There exists a compact subset E of M̃ such that
ddc log ω̃n ≥ C1ω̃ on M \ E, where C1 is a constant and
ω̃ = π∗ω.

(ii) For each x ∈ E, there exists a holomorphic map F from M̃ to
a Kähler manifold (N, ωN) with H(ωN) ≤ −1 such that
F ∗ωN ≥ C2 ω̃ where C2 is a constant independent of x.

Then, M admits a complete Kähler-Einstein metric ωKE which is
uniformly equivalent to ω, and the curvature tensor of ωKE has
bounded covariant derivatives of arbitrary order.



A motivated example for Theorem 3 is the moduli space of
Riemann surfaces, whose covering space is the Teichülcer space.
The Bers embedding theorem exemplifies the map F from the
covering space to a large ball in Cn so that the pullback metric
under F is nondegenerate.

The complete Kähler-Einstein metric of negative scalar curvature is
an example of the invariant metric on a complex manifold; that is,
every biholomorphic map is an isometry relative to such a metric.
Thus, an invariant metric depends only on the complex structure
of the complex manifold. Besides the Kähler-Einstein metric, the
classical invariant metrics also include the Bergman metric, the
Carathéodory-Reiffen metric, and the Kobayashi-Royden metric.



We shall use the quasi-bounded geometry developed in the
previous theorems to address several problems concerning the
Kobayashi-Royden metric and Bergman metric.

The Kobayashi-Royden metric K is the infinitesimal form of the
Kobayashi pseudo-distance. Let M be a complex manifold. For
each x ∈ M and X ∈ T ′xM, consider a holomorphic map φ from
the unit disk to M such that φ(0) = x and φ∗(v) = X . The
Kobayshi-Royden metric K(x ,X ) is define to be the infimum of the
Euclidean norm |v |0 over all such maps φ.



A notable conjecture imposed by R. E. Greene and H. Wu (1979)
asserts the following: If a complete, simply-connected, Kähler
manifold has sectional curvature bounded between two negative
constants, then its Kobayashi-Royden metric is uniformly
equivalent to the background Kähler metric.

In fact, it is well-known that, due to the Schwarz Lemma, the
Kobayashi-Royden metric is always bounded below by a hermitian
metric, provided the holomorphic sectional curvature of the
hermitian metric is bounded above by a negative constant. Thus,
it is the upper bound of Kobayashi-Royden metric that requires a
proof.



By using the quasi-bounded geometry and a comparison argument,
Damin Wu and I can prove a stronger result, which removes the
simply-connectedness, and relaxes the sectional curvature by the
holomorphic sectional curvature.

Theorem 4 (Wu-Yau (2017))

If a complete Kähler manifold with holomorphic sectional curvature
bounded between two negative constants, then its
Kobayshi-Royden metric is uniformly equivalent to the background
Kähler metric.



Let us now recall the Bergman metric. Let M be an n-dimensional
complex manifold. There is a natural inner product on the smooth
(n, 0) forms given by

〈ϕ,ψ〉 = (−1)n
2/2

ˆ
M
ϕ ∧ ψ.

Notice that this inner product is independent of the hermitian
metrics on M and on KM .

Denote by H the set consisting of holomorphic n-forms ϕ such
that the induced norm ‖ϕ‖ < +∞. Then H is a separable Hilbert
space. Assume H 6= {0}. Then H contains an orthonormal basis
{ej}j≥0 with respect to the inner product.



One can define an (n, n) form B on M ×M by

B(p, q) =
∑
j≥0

ej(p) ∧ ej(q).

This definition is independent of the choice of orthonormal basis.
Along the diagonal of M ×M, we can express B(p, p) in terms of
local coordinates (z1, . . . , zn) as

B(z , z) = b(z , z)dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n.

We call B(p, p) and b(z , z) the Bergman kernel form and Bergman
kernel function on M, respectively. When M is a domain in Cn, the
Bergman kernel function b recovers the classical Bergman kernel.



We further assume that the Bergman kernel form B > 0
everywhere on M. Let

ωB = ddc log b,

which is globally defined on M. We call ωB the Bergman metric
on M, if ddc log b > 0 everywhere on M.

By contrast to those Bergman metrics defined via a general
positive line bundle, the Bergman metric given here is an invariant
metric on M.



Based on my work with Siu in 1977, R. E. Greene and H. Wu
(1979) proves the following result: If (M, ω) is complete,
simply-connected, Kähler manifold whose sectional curvature is
pinched between two negative constants, then M admits a
Bergman metric ωB, which dominates ω, i.e., ωB ≥ Cω on M. In
particular, ωB is complete.

Then, Greene-Wu (1979) conjectures that the Bergman metric ωB

is also dominated by ω; in other words, ωB is uniformly equivalent
to ω.

The topological constrain is needed here, as we have examples of
P1 \ {0, 1,∞} and the punctured disk.



Attempts

This conjecture of Greene-Wu would follow immediately if one can
derive an volume estimate ωn

B ≤ Cωn. However, the volume
estimate is not easy, as the Schwarz lemma does not apply. The
curvature of Bergman metric is unclear in general.

Greene-Wu (1979) proposes to show the following technical
statement: For every x ∈ M, there is a uniform positive lower
bound for ‖ϕ‖ where ϕ runs over all square integrable holomorphic
n-forms such that ϕ vanish at x of order 1. Indeed, such an
estimate seems no easier than the conjecture itself, and is a
consequence of our next result.



Damin Wu and I take a different approach, using the bounded
geometry developed in the previous theorems to derive the
pointwise interior estimate. This enables us to prove the conjecture
of R. E. Greene and H. Wu.

Theorem 5 (Wu-Yau (2017))

If (M, ω) is a complete, simply-connected, Kähler manifold whose
sectional curvature is bounded between two negative constants −A
and −B, then its Bergman metric ωB has bounded geometry and
satisfies

ωB ≤ Cω on M,

where the constant C > 0 depends only on A, B, and dimM.
Consequently, ωB is uniformly equivalent to ω.

As a consequence, on a complete, simply-connected, Kähler
manifold M, the three classical invariant metrics, Kähler-Einstein,
Bergman, and Kobayashi-Roydent metrics, are all uniformly
equivalent. This proves an evidence of my conjecture that such a
manifold should be biholomorphic to a bounded domain in Cn.



At this end, let me mention another open problem. This is a
question about resolution of singularities of Kähler metrics. Let us
look at the following class of metrics: Take a complex variety M
and a subvariety S of M, we consider Kähler metrics g defined in
M − S that satisfies the following condition: at each point x ∈ S ,
there is a neighborhood U of x so that a nonsingular manifold O
and a subvariety D of O and a holomorphic map F : O → U which
maps D into S so that each component of the inverse of S ∩ U is
a compact subvariety of D. (In fact, a component of the inverse
image of a compact neighborhood is compact.)



The map is locally invertible on every point in O − D, and the
pullback of the metric g (defined on M − S) under F can be
extended to be a smooth nonsingular metric on O. We also allow
the pullback metric to be a Kähler metric defined on O − D,
complete towards D and its curvature and covariant derivatives are
bounded.

The Kähler metric g is said to admit resolution of singularities if a
system of maps {F} exists at every point x ∈ S . A good example
is the orbifold metric where O can be taken to be the ball and the
map F is the map from the ball to its quotient space which maps
the origin to the quotient singularity. Note that the singular
behavior of the metric depends on the system {F} which is defined
in holomorphic category.



I conjecture that if the curvature and the covariant derivatives of
the curvature of this Kähler metric are bounded in each
neighborhood of x of S , the resolution system {F} exists. Such a
statement may be called resolution of singularities of Kähler
metric. Note that if we fix a holomorphic system {F}, there is only
one complete Kähler-Einstein metric with negative Ricci curvature
resolved by {F}.

On the other hand, there can be distinct Kähler-Einstein metrics if
we choose different system to resolve the singularities of the
metric. One can define two systems of resolutions to be equivalent
if the holomorphic map from O −D to O ′ −D ′ can be extended to
be a nonsingular map from O to O ′ and the same is true for the
inverse map from O ′ − D ′ to O − D.



This concept appeared in my works in the late 1970s with S.-Y.
Cheng on the construction of Kähler-Einstein metrics on singular
varieties. The existence of Kähler-Einstein metrics can be readily
generalized to this class of singular metrics. (Basically the same
argument I used with Cheng (1984).)

Is it true that algebraic manifolds of general type admits such
Kähler metrics with negative Ricci curvature? It is certainly true
for algebraic surface of general type. Since the arguments of Ricci
flow largely depend only on maximal principle, Kähler-Ricci flow
works well with class of singular metrics. Note that such Kähler
metric includes a class of Kähler metrics which can be degenerate
along S .



Thank you!
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