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Outline

Survey of the probabilistic construction of canonical metrics

1. X is variety of positive Kodaira dimension

2. X is Fano (conjectural picture)

3. X is toric and tropicalization (supporting the conjectural pic-
ture)



Motivation

Let X be a n—dim. complex projective algebraic variety and
consider the case when Kx > 0 and non-singular.

By the Aubin-Yau theorem X admits a unique Kahler-Einstein
wr g Mmetric with negative Ricci curvature:

Ricoxs = —oxp ™ (1)

In particular, there is a canonical (normalized) volume form dVi g
on X : =

dVKE = w?{E/V




Conversely, we can recover the metric wg, from the volume form
dVKE .

i@g(log dVKE) = WKE




Hence, the fundamental canonical object attached to X is a

volume form.
C————



Varities of positive Kodaira dimension

More generally, Song-Tian and Tsuji introduced a canonical mea-
sure px on any variety X with positive Kodaira dimension, i.e.

when
mo(x, KK x) m

=
where HO(X, kK x) is the space of all pluricanonical forms at level
k.

e [ he measure pux is birationally invariant



The probabilistic point of view

Is there a canonical way of sampling N points on X at random
so that the canonical measure uy emerges as N — oo?

e Of course, we could always sample wrt ux, but this is cheat-
ing as we want to recover ux from this process!

e More specifically, we want the sampling procedure to be “al-
gebraic’ i.e. encoded by the canonical ring of X :

P HO(X,kKx)
k>1

e In accordance with the usual philosophy in Kahler geometry



T he definition of the canonical probability measures

Setting =
mdim HO(X, kK x)

we will define a sequence of probability measures M(Nk) on XNk
which are symmetric, i.e. invariant under the action of the per-
mutation group 2 ;.




Then M(Nk') descends to define a probability measures on the

space —
R

of configurations of N, points on X.

e By definition this is a random point process on X with N
particles




To define a probability measure u(Vr) on XMk we just need to
find a “‘canonical”’ element

—

S e HOX N kK | w,)




We can then define

I 2/k
C(Nk:) — E‘S( )(Zl"”’sz)‘ / dzq1 Ndz1 N\ - - - /\d@
k

where Zy,_is the normalizing constant ensuring that M(Nk) IS a
probability measure. Note however:

e We want ‘S(k)(zl, ...,sz)| to by symmetric (i.e. permutation
. . ?
invariant)

e It is enough if S(k) is determined up to a multiplicative com-
plex number
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This can be achieved by taking S() to be in the totally anti-
-

symmetri t of
CHO(XM, kK oy, ) (= HO(X kK x) ® - ® HO(X, kKx), N@

i.,e. S(F) is a generator of the determinant line

AVEHO (X, kK x) € HO(XNk KK | 5,)

Concretely, taking a basis sgk) in HO(X,kKx) we can take

@1,$2, :ENk) = det (Sz(k)(wjm
1<4,7<N

Accordingly, we will denote a generator of ANeHO(X, kK x) by
(det)S(’“) which is thus a section of kK, n, — X"
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It is easy to see that the probability measures are birationally
invariant

— —

12



Main theorem (B. 13)

Let X be a projective variety with positive Kodaira dimension.
Then the empirical measures of the canonical random point pro-
cess converge in law towards the Song-Tian-Tsuji canonical mea-

sure puyxy on X :
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Concretely, when Kx > 0 this implies the the weak convergence
of the following canonical volume forms on X :

as N — oo
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/ Corollary

Assume that Kx > 0. Then the following “Bergman type” Kahler

metrics

Wy = iaélog/
k SNy

converge weakly on X towards the unique Kahler-Einstein metric

{%‘ ;? /

e More generally, when X is of general type, the current wy, is
singular along the base locus of kK x and wg g IS the singular
— T .

Kahler-Einstein metric [Eyssidieux-Guedj-Zeriahi,...].

2/k
1‘(detS(k))(-,zl...,sz_l)‘ / dzl/\dzl/\---/\dsz_l/\de

e When Kx > 0 this is somewhat similar to the convergence
of balanced Bergman metrics [Donaldson, ...]
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e But one virtue here is that it also works in singular and de-
generate settings.

—




In fact, the proof of the main theorem shows that the conver-
gence of the empirical measure

towards the deterministic meaure uy is exponential in the sense
e ——

of large deviations. -
’_7?‘

The corresponding rate functional F'(u) has the property that

F(w"/V)

coincides with Mabuchi's K-energy M (w) of w (which is mini-
mized on wKE)
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The Fano case

Now consider the opposite setting when X is a Fano manifold,
I.e.

—Kx >0

A KE-metric wg g must have positive Ricci curvature.

Yau-Tian-Donaldson conjecture: X admits a KE metric iff X
is K-polystable

[settled by Chen-Donaldson-Sun, for X smooth]
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An alternative variational approach gives [B.-Boucksom-Jonsson]:

e A Fano manifold X admits a unique KE metric iff X is uni-
formly K-stable
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T he probabilistic approach

Recall that in the case Ky > 0, the probability measure on XNk
is defined by

2/k
CNK) —Z—‘S(k)(zl,...,sz)‘ / dzl/\dzl/\---/\dm
N,

where @1*) is built from the Ny—dimensional vector space H (X, kKx)

e However, when —Kx > 0O the spaces HO(X, —kK ) are trivial!
?’

e Instead, we need to work with the spaces HO(X, —kKx)
——

e We are then forced to replace the power 2/k with —2/k
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On a Fano variety X it is thus natural to try to define

. 1 —2/k
@k) =S (2q, . 2y )| / dzy ANdz1 A - - - /\dzN%
ZN, ¢ ' -

where S(5) is a generator of the determinant of HO(X, —kK ).

e However, now the normalizing constant ZNk: ma; diverge!

Definition: A Fano manifold X is said to be Gibbs stable if
Zpn, < oo, for k>> 1.

20




Conjecture: Let X be a Fano manifold. Then

e X is Gibbs stable iff X admits a unique KE-metric wig

e In that case, wx g emerges in the many particle limit of the
corresponding random point processes

.:O <o
e B
& l. . 21



Gibbs stability

The notion of Gibbs stability admits a natural algebro-geometric

formulation:
Consider the following divisor Dy, on X7, /

L —

6 = (s®) = 0) = {(1, ., yan,) 1 Jsp € HO(XNVk, —kKx, )t sp(x;) = 0}
= k )

e Dy/k is a Q—divisor on Xk such that Dy/k ~ —K .,
— —_—

e Gibbs stability of a Fano X at level £k means that D, /k has
mild singularities in the sense of the MMP.

(k) .




In other words, X is Gibbs stable iff

—
1
Ict(XNk,EDk) > 1k>>\/,

This also suggests a stronger notion of Gibbs stability “uniform
Gibbs stability’:

liminf Ict (XNk, 1D;) > 1

k— 00
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Using MMP techniques Fujita and Fujita-Odaka have recently
shown:

.\uanibbs stability == uniform K-stability

Hence, by the resolution of the YTD

=
@orm Gibbs stability — existencm

But the convergence of the point processes is still open (and the
converse implication)
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The case when Aut (X)g is non-trivial

If Aut (X)g is non-trivial, then X is not Gibbs stable:

ZNk:OO

We have to break the symm_e—try!

_— —_—

Fix a volume form dV on X. It induces a metric ||-|| on —Kx.
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For any sufficently small v > O the “regularized” probability mea-
sure on Xk

D 1

is well-defined when k£ >> 1.

More precisely, it is well-defined as long as v < v(X), where the
critical exponent v(X) is given by

+(X) :=liminf Ict (XNk,%
k— 00
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Conjecture

e The critical exponent v(X) coincides with the sup over all ~
such that Aubin’s equation

6 w = yw + (1 — ’y)RiC D 6 \ s,
7 /‘ﬂ; /

admits a solution w, (assumed “minimizing” if v > 1)

o If v < v(X) < 1, then the unique solution w~ emerges in
the many particle limit of the corresponding random point
process.

o If X is “"Gibbs polystable”, then one gets a Kahler-Einstein
metric w by first letting N — oo and then increasing v — 1
[to de defined...]
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Relations to statistical mechanics and proof stategy

Fixing a volume form dV on X and g € R we consider the prob-

ability measure
28/k
/'L(N) . S(k) B/ dv@Nk on XNk
p N 3
Ni.S

This gives the canonical probability measures when g = +1.

We can rewrite

@ e_BE(N)(xl’”"xN)dV@Nk@
ZNk;,ﬁ
where
9)
o = atien s

28



In general, a probability measure of the form

—

,LL(N) — ie—ﬂE(N)(xl,,xN)dv@)Nk OHB
’ ZN,5 ’

IS the Gibbs measure describing the equilibrium distribution of N

particles on X with interaction energy EWN) at inverse tempera-
ture B.

Q Qo
) QDcSDoO 0O 0P ooooo &
L)

>
e In our case the interaction EV)(zq,...,zn) = —kLlog HS(’“)H
IS repulsive

—

e T he case when 8 = —v < 0 equivalently corresponds to an
attractive interaction at inverse temperature ~.

29




The starting point of the proof of the convergence when 8 > 0
iIs that

—1E(N)<aj17 R xm

in the sense of '—convergence [using B.-Boucksom'11]

e E(u)is the pluricomplex energy of u (i.e. E(u) = (I—=J)(pu))
phutla k-

Heuristically, this suggests the following asymptotics:

30



1 (V) N
— Or; € Be(p) | i= — e PN qu®

~ e_NFB(“’), N — 00, e >0

where the “rate functional” Fjg is a Isc functional on P(X) :

C Fan) = BEG) + Ent 4y () =G5

e This is classical when =0 (i.e. E = 0) [Boltzmann, Sanov,...]

e Thus, the probability is exponentially small, unless Fﬁ(u) =0
——
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o F3(w") = M(w) :=Mabuchi's K-energy. So this “explains”
the Chen-Tian energy+entropy formula for M(w)

e [ he actual proof of the asymptotics exploits that EWN) s
uniformly quasi-superharmonic on the orbifold X /> .

—

e To handle the case 8 < 0 one should exploit the plurisubharmonicity..
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Supporting evidence in the Fano case (8= —1)

e The conjectures do hold when X is a one dimensional 10g

Fano. R

e [ hen Gibbs stability is equivalent to uniform Gibbs stability
and K-stability

e If X admits a KE metric, then the functional F_q(u) is Isc
on P(X) [BBGEZ] —
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The toric case and tropicalization

Let now X be a toric Fano variety, i.e. X is an equivariant
compactification of the complex torus C*.

By the usual toric dictionary

(X,~Kx) +— P, K

where P is a certain polytope P C R™.

.Mz ®

& —+¢

e Let my,...,my, De an enumaration of the integer points of
kP

e The corresponding multinomials 2™ span HY(X, —kKy)
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Accordingly, we can write the non-normalized measure on (C*?)4V
as

where

. Ms(1 Ms(N
Aoy, o) = 3 (~1)SIINE), T )
O'ESN
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Exploiting the torus symmetry

Recall that, modulo Aut (X)g any Kadhler-Einstein metric wig

on a toric variety X is invariant under the action of the real torus
T. —

—_———

In particular, its volume form dVig on C* “descends” to R"™

under _—
Gg . C" =R,z 2= (log |z, .., 109 |zn[?),

where dy is the invariant top form on the torus fiber T

——

@ psh <;> o(x) convD
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However, the measure

A2, .z, 2P ( .

dz
— A

dz\ #M
<

does not “descend” to (R™)¥, i.e.
—

@Nk) = log |A(z1, szD

is not T —invariant!
B —
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Tropicalization

The philosphy of Tropicalization: replace an elusive problem for
polynomials in C9 with a simpler one, for piece-wise affine convex
functions in R? : S

E cmz "t~ d(x) '= maxx - m
meP
meP

Equivalently, the psh function on C¢

< W() = log |P(2)

is replaced by a convex function on R :

Cotor = Jim vt >
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Applying this philosphy here suggests studying the point pro-
cesses on R™ defined by the following measure on (R™) :

e_EtTOp(xla'“axN)dx(gN,

where

@;, e TN ) = Jn;gﬁ (:1:1 ‘Mg(1) T - T TN m@,

mi,...,mpy are the lattice points in kP.

e Optimal transport interpretation: —FEi.op(x1,...,zxN) iS the

@I minimal quadratic cost of transporting the the mea-

sure dny(x) to dny(m). X; ~ @




The action of T- € Aut (X)g on X corresponds to the transla-
tion action on R",

It forces

ZN — /‘e_EtTOp(xla"'aa:N)dx@N — 0O

for any polytope P.

Again, we have to break the symmetry: Fiop(z1,...,N) ~

YEtrop(T1, .- zN) + (1 —7) (¢p(z1) + ... + op(zN))
Then Zy 4 is finite for v <~vp
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Thm (B.- Onnheim):

e The critical exponent vp coincides with the invariant R(Xp)

e When v < vp the unique solution w~ of the Aubin-Yau equa-
tion emerges in the many particle limit of the corresponding
random point process.

e When Xp is K-polystable one gets a KE metric wi g by first
letting N — oo and then v — 1.

The proof exploits convexity of Ei.op, i.€. that the correspond-
ing probability measures are log-concave (Prekopa inequality,
Borell's inequality, ...).
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T hank you!!!
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